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Pooling DNA samples can yield efficient estimates of the prevalence of genetic
variants. We extend methods of analyzing pooled DNA samples to estimate the
joint prevalence of variants at two or more loci. If one has a sample from the
general population, one can adapt the method for joint prevalence estimation to
estimate allele frequencies and D, the measure of linkage disequilibrium. The
parameter D is fundamental in population genetics and in determining the power
of association studies. In addition, joint allelic prevalences can be used in case-
control studies to estimate the relative risks of disease from joint exposures to
the genetic variants. Our methods allow for imperfect assay sensitivity and speci-
ficity. The expected savings in numbers of assays required when pooling is uti-
lized compared to individual testing are quantified. Genet. Epidemiol. 22:94–102,
2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Quantitative assays on pooled DNA can, in principle, determine the allele dis-
tribution at a particular locus, resulting in very efficient tests for association between
disease and given alleles [Barcellos et al., 1997; Breen et al., 1999; Collins et al.,
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2000; Germer et al., 2000; Shaw et al., 1998; Risch and Teng, 1998]. Some qualita-
tive assays can determine only which genotypes are present in a pooled sample,
while other qualitative assays can determine only whether a particular allele is present
in the pool (carrier status). In this paper, we discuss efficient methods of analyzing
pooled DNA samples with qualitative assays to estimate the joint prevalence of vari-
ants at two or more loci.

If one has a sample from the general population, one can adapt the method for
joint prevalence estimation to estimate allele frequencies and D, the coefficient of
allelic association, which is a key determinant of the power of association studies
based on linkage disequilibrium. Indeed, empirical studies [Dunning et al., 2000]
and modeling of population evolution [Kruglyak, 1999] have been used to estimate
D as a function of distance between markers. Kruglyak used this information to de-
termine how dense a genetic map of single nucleotide polymorphisms (SNPs) should
be for association studies. In case-control studies, one needs to estimate the joint
distribution of the variants separately in cases and controls to understand the relative
risks of disease from joint exposures to the genetic variants.

Hughes-Oliver and Rosenberger [2000] presented methods based on an adap-
tive two-stage design for detecting the proportion of individuals with multiple traits
of interest. In contrast to these two-stage procedures, we use a single-stage pooling
design to keep laboratory protocols simple and allow for errors in the tests.

JOINT CARRIER PREVALENCE ESTIMATION

To study qualitative assays for carrier status, we denote the two different loci by
A and B. Let the carrier status indicator CA = 1 denote the event that a person carries
at least one copy of the allele of interest at locus A, and let CA = 0 denote the comple-
mentary event. Define the events CB = 1 and CB = 0 analogously. Let pij = P(CA = i,
CB = j) for i,j = 0,1. We call the alleles of interest the “variants.” Then p00(p11) de-
notes the probability that an individual has no (both) variants, p10(p01) the probability
that an individual has a variant at locus A(B) but not at locus B(A). Let N denote the
total number of subjects in the sample, and k the size of each of the m pools, so km =
N. Let TiA(TiB) be one if the ith pool tests positive for a variant at locus A(B) and zero
otherwise. Let SiA(SiB) be one if there is at least one subject with a variant at locus
A(B) in the ith pool and zero otherwise. The sensitivity of the test for a given pool size
for locus A is then defined as hA = P(TiA = 1 | SiA = 1), and the specificity is fA = P (TiA

= 0 | SiA = 0). We define hB and fB analogously for locus B. In addition, we assume
that TiA depends only on SiA, and TiB depends only on SiB, so that
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We base our inference on: X11 = Σm
i = 1TiATiB, the number of pools that test positive for

variants at both loci, X10 = Σm
i = 1TiA(1–TiB), the number of pools that test positive for

the variant at locus A, but not at locus B, X01 = Σm
i = 1(1–TiA)TiB, and X00 = m – (X11 +

X10 + X01). The vector (X11,X10,X01,X00) has a multinominal distribution with index m
= ΣijXij and probabilities pij for i = 0,1 and j = 0,1. p11 denotes the probability that a
pool tests positive for variants at loci A and B, p10 is the probability that a pool tests
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positive for a variant at locus A but not at B, and p01 and p00 are defined similarly.
The pij are found by the law of total probability, for example, p11 = ΣSiA

,SiB P(TiATiB =
1|SiASiB)P(SiASiB). Using the conditional independence assumption and letting qij =
P(SiA = i, SiB = j),
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As the individuals in each pool are assumed to be independent, the q’s depend on the
individual probabilities (p11,p10,p01,p00) through the relationships
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The log likelihood for the observations (X11,X10,X01,X00) is essentially
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Assuming that the sensitivity and specificity parameters are known, we can solve the
score equations obtained by differentiating equation (2) with respect to p11,p10,p01, to
obtain the maximum likelihood estimates (MLEs) p̂11,p̂10,p̂01. The asymptotic distri-
bution of the estimated is multivariate normal, and the asymptotic covariance matrix
is found from the inverse of the Fisher information.

In the following numerical studies, we used high levels of sensitivity and speci-
ficity, which are reasonable for pool sizes of 10 or smaller [Krook et al, 1992; Chen
and Zarbl, 1997]. These parameters might not be appropriate for direct sequencing
or single-stranded conformational polymorphism analysis [Amos et al., 2000].

For the first simulated example, we assumed that both variants are rare, and
chose (p10,p01,p00,p11) = (0.02, 0.01, 0.965, 0.005). For each fixed sample size N =
1,000 or 500, and pool sizes of k = 2, 5, and 10, we generated 500 independent
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multinomial samples with parameter p and N, and each such sample was grouped
into m = N/k pools. The MATLAB [The Mathworks Inc., 1999] random number
generator unifrnd was used to generate the multinomial counts. The entries in Table I
are the average MLE estimates p̂ from these simulations, and the average estimated
standard deviations of the components of p̂ obtained from the Fisher information.

For perfect tests, the MLE estimator p̂ is nearly unbiased in every case except
N = 500 and k = 10, for which p̂10 has a 20%, and p̂11 a 40% upward bias. Gastwirth
and Hammick [1989] noted a similar bias when estimating the prevalence of a single
trait with pool sizes above 10. The small sample bias reflects the fact that only m =

TABLE I. Average Estimates, Average Estimated Standard Errors and RSE, the Ratio of
Standard Errors From Unpooled Testing to Standard Errors for Pooled Testing, as a Function of
Pool Size, k, and Number of Pools, m

Saving
N k (%) p̂ std error (p̂ ) RSE

Perfect tests
Example 1: p10, p01, p00, p11 = 0.02, 0.01, 0.965, 0.005
1,000 1 0 0.020 0.010 0.965 0.005 0.005 0.003 0.006 0.002 1.000 1.000 1.000 1.000

2 50 0.020 0.010 0.965 0.005 0.005 0.004 0.006 0.002 0.915 0.886 0.844 1.000
5 80 0.020 0.010 0.965 0.005 0.005 0.003 0.006 0.002 0.915 0.912 0.857 0.917

10 90 0.020 0.010 0.965 0.005 0.005 0.004 0.006 0.003 0.843 0.861 0.844 0.846
500 1 0 0.020 0.010 0.966 0.005 0.006 0.004 0.080 0.003 1.000 1.000 1.000 1.000

2 50 0.020 0.010 0.965 0.005 0.011 0.005 0.014 0.004 0.750 0.827 0.609 0.914
10 90 0.024 0.010 0.959 0.007 0.027 0.006 0.037 0.015 0.233 0.782 0.209 0.212

Specificity: fA = fB = .99, Sensitivity: hA = hB = .99
1,000 1 0 0.020 0.010 0.965 0.005 0.005 0.003 0.007 0.004 1.000 1.000 1.000 1.000

2 50 0.020 0.010 0.965 0.005 0.005 0.004 0.007 0.004 0.849 0.564 0.836 0.958
5 80 0.018 0.009 0.964 0.009 0.008 0.006 0.009 0.011 0.570 0.400 0.597 0.211

10 90 0.017 0.008 0.959 0.015 0.010 0.005 0.021 0.026 0.570 0.400 0.597 0.211
500 1 0 0.020 0.010 0.965 0.005 0.008 0.005 0.010 0.005 1.000 1.000 1.000 1.000

2 50 0.020 0.010 0.965 0.005 0.007 0.005 0.009 0.003 0.459 0.449 0.253 0.086
5 80 0.017 0.008 0.959 0.015 0.010 0.005 0.021 0.026 0.849 0.537 0.830 0.941

10 90 0.018 0.008 0.956 0.018 0.013 0.007 0.027 0.031 0.569 0.460 0.308 0.108

Perfect tests
Example 2: p10, p01, p00, p11 = 0.077, 0.073, 0.835, 0.015
1,000 1 0 0.077 0.073 0.835 0.015 0.009 0.008 0.011 0.004 1.000 1.000 1.000 1.000

2 50 0.076 0.073 0.835 0.015 0.009 0.009 0.012 0.005 0.944 0.922 0.933 0.760
5 80 0.077 0.073 0.834 0.015 0.011 0.010 0.015 0.007 0.773 0.830 0.747 0.543

10 90 0.077 0.073 0.834 0.015 0.016 0.014 0.019 0.010 0.531 0.593 0.590 0.380
500 1 0 0.077 0.073 0.836 0.015 0.011 0.012 0.016 0.006 1.000 1.000 1.000 1.000

2 50 0.077 0.072 0.835 0.015 0.013 0.012 0.017 0.007 0.846 1.000 0.941 0.857
5 80 0.077 0.073 0.833 0.016 0.015 0.015 0.021 0.011 0.745 0.807 0.742 0.500

10 90 0.077 0.073 0.833 0.016 0.021 0.021 0.027 0.014 0.542 0.576 0.577 0.392
Specificity: fA = fB = .99, sensitivity: hA = hB = .99

1,000 1 0 0.076 0.073 0.835 0.015 0.009 0.008 0.013 0.005 1.000 1.000 1.000 1.000
2 50 0.077 0.073 0.835 0.015 0.010 0.010 0.014 0.005 0.850 0.820 0.892 0.992
5 80 0.078 0.073 0.835 0.015 0.012 0.011 0.015 0.007 0.708 0.745 0.833 0.728

10 90 0.081 0.077 0.823 0.018 0.018 0.022 0.027 0.015 0.472 0.372 0.463 0.340
500 1 0 0.077 0.074 0.834 0.015 0.013 0.012 0.018 0.007 1.000 1.000 1.000 1.000

2 50 0.076 0.072 0.837 0.015 0.013 0.014 0.019 0.008 0.992 0.878 0.931 0.837
5 80 0.080 0.075 0.828 0.017 0.017 0.017 0.022 0.011 0.758 0.723 0.804 0.609

10 90 0.084 0.078 0.818 0.021 0.023 0.025 0.027 0.019 0.560 0.492 0.655 0.352
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50 pools contribute information with N = 500 and k = 10. For each fixed N, there is
no perceptible loss in precision as one moves from k = 2 to k = 5 (see average
standard errors in Table I) but some decrease in precision for k = 10. Thus, for per-
fect assays, p̂ yields nearly unbiased estimates with good precision for k = 2 and 5
and, in most cases, for k = 10, with corresponding reductions in numbers of required
assays of 50, 80, and 90%. We also computed the ratio of the theoretical standard
error of the estimator based on individual testing to that based on pooled data, RSE.
For N = 1,000, there is little loss in precision from pooling measured by RSE, even
for k = 10 (Table I).

If the assays have sensitivity hA = hB = 0.99 and specificity fA = fB = 0.99, p̂
remains unbiased for k = 2, and there is little loss of precision compared to the case
of perfect assays. For k = 5 or 10, however  p̂11 is upwardly biased by 40% or more,
with the bias increasing as N and m decrease. The standard errors of p̂ in the pres-
ence of imperfect assays are also appreciably larger than for perfect assays for k = 5
or 10. Moreover, in the presence of measurement error, the RSE values are apprecia-
bly below 1.0 in many cases, indicating a considerable loss of precision compared to
individual testing.

A second example illustrates the case of higher prevalences of each variant, p11

= .015, p10 = .077, and p01 = .073 (Table I). With perfect tests, there is little evidence
of bias in p̂ even for N = 500 and k = 10. Even in the presence of errors, the bias
in Q̂ is small in every case except N = 500 and k = 10, for which p11 is overestimated
by 36%. Thus, the bias is much less prominent with larger values of p10, p01, and p11

than in the case of two rare variants. Pooling results in a widening of confidence
intervals, especially for p̂11, as one moves from k = 2 to k = 10. This loss of precision
is more pronounced in the presence of imperfect sensitivity and specificity, but im-
perfect testing does not result in the extensive loss of precision from pooling seen
for the case of two rare alleles. For k = 2, the loss of efficiency compared to indi-
vidual testing is comparable to the rare allele case for imperfect as well as perfect
testing, but for k = 5 and k = 10, the loss in efficiency can approach 30% for k = 5
and 60% for k = 10.

ESTIMATION OF LINKAGE DISEQUILIBRIUM

We show how to adapt these procedures to estimate the allele frequencies for
biallelic loci A and B and the linkage disequilibrium coefficient, D, from a random
sample from a population. Denote the wild type alleles by a and b, respectively, and
the variant alleles by A and B. The linkage disequilibrium coefficient is D = P(AB) –
P(A)P(B), where P(AB) is the probability that variants A and B appear on the same
haplotype, and P(A) and P(B) are the corresponding marginal probabilities. If one
has genotypes from parents as well as offspring, one can determine the haplotype of
offspring and estimate D directly from haplotype frequencies. Absent family data,
one can infer haplotypes from random samples of individuals with known genotypes
under the assumption of random mating.

The carrier type CA = 1 is composed of the two genotypes AA and Aa, as we do
not observe if an individual is a homozygote or a heterozygote for A. Let p denote
the allele frequency of a and r the allele frequency of b. Under random mating, the
genotype frequencies can be computed from haplotype probabilities as P(aabb) =
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(pr + D)2, P(aaBb) = 2(pr + D)[p(1 – r) – D], for example. A complete list can be
found in Khoury et al. [1993] (table 8–5, page 257) with D defined as above. Note
that P(AaBb) = 2(pr + D)[(1 – p)(1 – r) + D] + 2[p(1 – r) – D][(1 – p)r – D] is
composed of two parts, the probability of the double heterozygote in repulsion and
the probability of the double heterozygote in coupling.

Noting that p00 = P(aabb),p10 = P(Aabb) + P(AAbb),p01 = P(aaBb) + P(aaBB)
and p11 = P(AaBb) + P(AAbB) + P(AABB) + P(aABB), we can reparameterize the p’s
in terms of the three parameters p, r, and D to obtain p00 = (pr + D)2, p10 = r2 – (pr +
D)2, and p01 = p2 – (pr + D)2.

Maximizing the log likelihood (2) for p, r, and D yields the estimates for the
allele frequencies and D. Once p, r, and D have been estimated, one can use the
previous formulas and others in Khoury et al. [1993, table 8–5] to estimate joint
genotype frequencies.

If the laboratory technique used allows determination of exactly which alleles
are present in the pools rather than just whether a particular variant is present at each
locus, then the pooled data can be used to estimate genotype probabilities and allele
frequencies without an assumption of random mating (Appendix). To estimate D,
however, the random mating assumption is still needed.

To illustrate our method, we set r = .75, p = .9, and D = 0 or D = 0.05. This
choice of allele frequencies and D = 0.05 corresponde to potentially informative
markers for association studies [Kruglyak, 1999]. The underlying joint distribution
of the carrier status is p10 = 0.1069, p01 = 0.3544, p00 = 0.4556, p11 = 0.0831 for D =
0 and p10 = 0.0369, p01 = 0.2844, p00 = 0.5256, p11 = 0.1531 for D = 0.05.

Table II shows the average estimates of r, p, and D based on simulated pooled
and individual data (k = 1) with perfect assays. Each simulation used 500 replica-
tions. The wild type allele frequencies p and r were estimated without appreciable
bias in all cases, even with only m = 100 pools of size k = 5. Pools of size 5 do yield
somewhat less precise estimates of p and r than pools of sizes k = 1 or 2, which yield
comparable precision.

For D = 0, estimates of D are only very slightly biased for k = 2 and k = 5, and
there is modest loss in precision, compared to p̂ for k = 2, but D̂5 is much less
precise than D̂1. For D = 0.05, m = 100, and a pool size of k = 5, D̂5 = 0.045 underes-
timates the true D by 10%, but for larger numbers of pools, even k = 5 yields nearly
unbiased estimates of D.

DISCUSSION

We extend pooling methods to estimate the joint probabilities of genetic vari-
ants at two loci, while taking into account the specificity and sensitivity of the as-
says, which we assume known. When both variants are rare, p̂ has little bias and
good precision for perfect tests, even for k = 10 (90% reduction in assays). In the
presence of assay measurement error, however, the upward bias in p̂ is noticeable
for k = 5 or 10, and the loss in precision from using p̂ can be appreciable, compared
to individual testing. It may be advisable to restrict pools to small sizes to avoid bias
and loss in precision in the presence of measurement error. Even if k = 2, however,
the number of required assays would be cut by 50%.

Problems of small sample bias with pooled data, even in the presence of mea-
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surement error, are less severe when the variants are somewhat more common. Like-
wise, pooling does not result in severe loss of precision in the presence of measure-
ment error in Example 2 (Table I).

We also show how to use pooled data on carrier status for biallelic loci to esti-
mate the linkage disequilibrium coefficient and allele frequencies under the assump-
tion of random mating. Pooling gives good results when both wild type allele
frequencies are high, e.g., 0.75 or higher, and provides additional privacy protection
[Gastwirth and Hammick, 1989]. In this setting, estimates based on pools of size k =
5 with N = 500 lead to nearly unbiased estimates of D but substantial loss of preci-
sion compared to k = 1. Nonetheless, these sample sizes would have good power to
reject H0 : D = 0, when D = 0.05, as indicated by the standard errors in Table II.

If the assay allows one to determine exactly which alleles are present in the
pooled sample (see Appendix), then one can estimate genotypes and allele frequen-
cies without an assumption of random mating. Indeed, such pooled data could be
used to test the Hardy-Weinberg assumption at each locus. In order to estimate D,
however, the assumption of random mating is needed, even with assays that allow
one to determine exactly which alleles are present in a pool.

An important potential application of pooling methods is to case-control studies of
candidate loci in which one wants to assess joint effects of two variants at different loci
on disease risk. The pooling approach has some limitations, however, when using logis-
tic regression to control for potential confounders [Weinberg and Umbach, 1999]. If
potential confounders can be controlled for by stratification, unbiased estimates of joint
relative risk from variants at two loci can be obtained separately within strata.

TABLE II. Average Estimates of the allele Frequencies r = 0.75, p = 0.9, and the Disequilibrium
Parameter D = 0 and D = 0.05 and Average Estimated Standard Errors for Various Pool Sized k,
and Numbers of Pools, m*

N k m r̂ k p̂k D̂k std error (r̂ k, p̂k, D̂k)

r = 0.75, p = 0.9, D = 0
10,000 1 10,000 0.7501 0.9000 0.0006 0.0034 0.0021 0.0008

2 5,000 0.7498 0.9001 0.0010 0.0040 0.0022 0.0015
5 2,000 0.7496 0.8999 0.0031 0.0071 0.0029 0.0045

1,000 1 1,000 0.7497 0.8995 0.0017 0.0106 0.0068 0.0025
2 500 0.7501 0.9001 0.0033 0.0122 0.0074 0.0047
5 200 0.7336 0.8852 0.0090 0.1020 0.1133 0.0127

500 1 500 0.7508 0.8993 0.0024 0.0146 0.0105 0.0035
2 250 0.7497 0.9003 0.0044 0.0170 0.0104 0.0065
5 100 0.7506 0.8999 0.0146 0.0299 0.0133 0.0180

r = 0.75, p = 0.9, D = 0.05
10,000 1 10,000 0.7500 0.9000 0.0500 0.0033 0.0021 0.0015

2 5,000 0.7498 0.9001 0.0199 0.0039 0.0025 0.0019
5 2,000 0.7493 0.8996 0.0498 0.0099 0.0040 0.0065

1,000 1 1,000 0.7500 0.8998 0.0500 0.0105 0.0068 0.0046
2 500 0.7501 0.9000 0.0497 0.0117 0.0073 0.0058
5 200 0.7470 0.8993 0.0469 0.0233 0.0086 0.0159

500 1 500 0.7507 0.9000 0.0495 0.0153 0.0100 0.0067
2 250 0.7479 0.8992 0.0497 0.0180 0.0100 0.0080
5 100 0.7455 0.8993 0.0454 0.0444 0.0125 0.0180

*Results for k = 1, unpooled data, are shown for comparison.
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APPENDIX

Some laboratory techniques allow one to determine exactly which alleles are
present in a pool rather than just whether particular variants are present. The meth-
ods derived in Joint Carrier Prevalence Estimation for carrier data can be modified
for genotype measurements to estimate joint genotype frequencies for two biallelic
loci A and B.
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There are nine possible genotypes for an individual, with frequencies paabb, paAbb,
pAAbb, paaBb, paaBB, paAbB, pAAbB, paABB, and pAABB. After pooling samples of multiple
individuals, the probabilities that various alleles are detected in a pool are paabb, paAbb,
pAAbb, paaBb, paaBB, paAbB, pAAbB, paABB, and pAABB. For example, paAbb is the probability
that a pool tests positive for alleles a and A for the first, and for allele b for the
second locus. Assuming that the tests have perfect sensitivity and specificity and a
pool size of k, we have paabb = pk
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AAbb, paaBB = pk

aaBB, pAABB = pk
AABB, paaBb

= (paabb + paaBB + paaBb)
k
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aabb, pAABb = (pAAbb + pAABB + pAABb)

k
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AAbb, pAaBB = (pAABB + pAaBB + paaBB)
k
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aaBB, pAabb = (pAAbb + pAabb + paabb)
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  –
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aabb, paAbB = 1 – paabb – paAbb – pAAbb – paaBb – paaBB – pAAbB – paABB – pAABB.
These formulas can be adapted for imperfect testing. The likelihood function for the
joint genotype prevalences for m pools of size k is proportional to

logP(x,p) ∝  xaabblogpaabb + xAAbblogpAAbb + xaaBBlogpaaBB + xAABBlogpAABB +

xaaBblogpaaBb + xAABblogpAABb + xAaBBlog pAaBB + xAabblogpAabb + xaAbBlogpaAbB.

xAaBb denotes the number of pools that test positive for all four alleles, A, a, B, and b, for
example. Differentiating logP(x,π) with respect to the π’s yields the score equations.


